
!""

1

MCPA—MultiCore Portability
Abstraction

Martti Forsell
Platform Architectures Team

VTT
Oulu, Finland

Martti.Forsell@VTT.Fi

MP-SOC Forum’11
July 6, 2011

Beaune, France

FOR K:=0 TO log N-1 DO

FOR J:=2K+1 TO N PARDO Table[J]:=Table[J-2K]+Table[J];

fetch

Synchronizatio
separating the st

 essible shared memory

R om shared memory

P3 P4

Common clock or independent clocks

Distributed memory

P2 P3 PpP1

M1 M2 M3 Mp

C2 C3 CpC1

Asynchronous cache coherence/memory network

Common clock

Word-wise accessible shared memory

Read/write operations from/to shared memory

P2 P3 P4P1

!""

2

MCPA — MultiCore Portability Abstraction
Martti Forsell, Chief Research Scientist, VTT (Technical Research Center of Finland)

Abstract: Application portability between different architecture-paradigm/programming tool pairs for
MP-SOCs is a big problem nowadays leading often to a complete rewrite of an application when switch-
ing from an architecture-paradigm pair to another. This is caused by a wide variety of architectural prop-
erties requiring different optimization techniques for different architectures, typically hiding the essence
of parallel computing defined by the application.

In this presentation, we introduce the MultiCore Portability Abstraction (MCPA) simplifying portability and
implementation of parallel applications. It abstracts away typical architecture dependent effects caused by
latency, synchronization, and partitioning and acts as an executable intermediate abstraction/reference
implementation as well as a tool for analyzing the intrinsic parallelism of the application and relative good-
ness of architectures in executing it. We give a short application example with performance measurements.

Interestingly, the MCPA appears to be architecturally directly implementable via our advanced configurable
emulated shared memory architecture (CESM), which we are currently prototyping in our recently launched
REPLICA project. If successful, this promises to simplify MP-SOC application programming radically.

!""

3

Problem: MP-SOC application portability

Weak application portability between different architecture-paradigm/
programming tool pairs for MP-SOCs is a big problem nowadays

This leads often to a need for complete rewriting of an application
when switching from an architecture-paradigm pair to another.

The reason: Different optimization techniques are applied for different
architectures, which typically hides the intrinsic paral-
lelism of the application from programmers.

GP-GPU/Cuda x86/PThreads?
Unfortunately
the more opti-
mized the archi-
tecture is for
certain applica-
tion the bigger
the risk is!

!""

4

MCPA—MultiCore Portability Abstraction
A shared memory-based abstraction to improve portability and simplify parallel implementation
—Natural extension of the model of sequential computation

The first model of computation that comes into the mind of a programmer as he starts to think
how to solve a computational problem in parallel
— abstracts away latency, synchronization cost and data partitioning effects (like its conterpart)

Clock

Memory

M

P
Sequential

execution of
instructions

Latency=1

Common clock

Word-wise accessible shared memory

Read/write operations from/to shared memory

P2 P3 P4P1

Abstracts latency differences and
memory hierarchy away

Abstracts latency differences, synchronization costs and
memory system partitioning effects away

!""

5

Overview of the MCPA

Abstraction

A1,P1

A1,P3

A7,P2 A17,P11

A22,P17

A19,P8

Architecture-
paradigm
specific opti-
mization,
guidelines

Paralle program-
ming techniques,
parallel algo-
rithm theory

Architecture
paradigm pairs

Direct architecture-
paradigm specific
implementation

Computational
problems

(very often parallel)
Sequential
legacy code MCPA acts as

• executable parallel refer-
ence implementation

• tool for analyzing the
intrinsic parallelism of the
application and goodness
of the architectures

• intermediate model for
simplifying implementa-
tion and portability

!""

6

MCPA

• Works with different parallel algorithms from
sequential (weakest alternative) to fine-grained
parallel (most beneficial)

• Helps to analyze how parallel the application is
• Simplifies portability between architecture &

paradigm pairs with respect to direct imple-
mentation without the abstraction

• Provides simplest programmability
• Helps architecture and paradigm selection
• Provides simple guidelines for optimizing the

functionality for architecture-paradigm pairs
(assuming they are supported by MCPA)

Common clock or independent clocks

Distributed memory

P2 P3 PpP1

M1 M2 M3 Mp

C2 C3 CpC1

Single-
threaded
cores &
coherent
caches

Asynchronous cache coherence/memory network

Common clock

Word-wise accessible shared memory

Read/write operations from/to shared memory

P2 P3 P4P1

!""

7

Natural MCPA-assisted functionality
design flow (first outline)

MCPA version modified for the computational
model of the target architecture

Architecture optimized version
(Architecture dependent design)

Native MCPA version
(Natural parallelism)

Computational problem
(Functionality)

MCPA execution, T=N, invalid/very slow in SMP,
NUMA, CC-NUMA, VC, fast/full speed in ESM

Native execution, T=N, typically badly sub optimal
in SMP, NUMA, CC-NUMA, VC, obsolent for ESM

Native execution, T<<N, best performance in
SMP, NUMA, CC-NUMA, work-optimal

Architecture dependency

Sequential version

If this is used as a starting
point a rewrite can not be
avoided

Optimize using the guidelines

Add synchronizations etc. to ensure correctness

Easy programming

!""

8

Examples of guidelines (rough, very early version)

4/16/64-ESM & e-language4/16/64-NUMA & e-languageIntel Core2 Duo SMP & PThreads

MCPA

1. Match the #SW threads with #HW
threads

2. Synchronize with explicit
barriers

3. Minimize the number of
synchronizations by
reorganizing com pu-
tation, e.g. with
blocking

1. Match the #SW threads
with #HW threads

2. Synchronize with explicit
barriers

3. Minimize the number of synchro -
nizations by reorganizing com -
putation, e.g. with blocking

4. Maximize locality by locating data
needed by a core next to it

1. Match the #SW threads
with #HW threads

Guidelines deal with synchronization, mapping, partitioning,
blocking, hashing, scheduling, ...

!""

9













     






















 







 







 





 
























 





 





 







 














 



  

 

 



 



 

















     


















 







 







 







 



















 





 





 







 















 



  

 

 



 



 



















     














     

 



     

 



    

 



    

 


















    

 



    

 



    

 





    

 











    

 



  

 

    

 



 



    

 



















   



























   

  

  







   

  

  







   

  

  







   

  

  



























   

  

  





   

  

  









   

  

  









   

  

  

















   

  

  

 

 





   

  

  













   

  

  





Early example:
PREFIX sum

Optimized
(blocking),
not unrolled

Optimized
(blocking),
not unrolled

Optimized
(blocking),
not unrolled

Optimized (blocking,
localization), not
unrolled

in SW

!""

10





















   














       

 

       

 

       

 

       

 























       

 

       

 

       

 

       

 















       

 

        

 

        

 



A horror story—How the first attempt can lead to a complete disaster in performance

We used the standard text-book logarithmic prefix sum algorithm O(log n), made it work on our
Core2 Duo SMP & PThreads with explicit barriers for 16 threads.

The resulting program executed 11 000 000 times slower than the sequential one on Core2
Duo SMP & PThreads although it works as predicted in ESM & e.

Early example:
PREFIX sum

Optimized (blocking,
localization), not
unrolled

!""

11

Architectural imple-
mentability?!

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

1.00E+15

1.00E+16

1.00E+17

1.00E+18

4 16

64

25
6

10
24

40
96

16
38

4

65
53

6

E
xe

cu
tio

n
tim

e
(c

lo
ck

 c
yc

le
s)

Number of processors P

ESM

CESM

CC-NUMA

NUMA

SMP

VC

MP

8E+1001

4E+100.1cy
c

5E+100.1

6E+100.1

7E+100.1

8E+100.1

s)

e
cy

cl

1

ESM

ESM C

0E+100.1

1E+100.1

2E+100.1

3E+100.1(c

4E+100.1c1

ck

o
(c

l

1

m
e

it
noit

cu
E

xe

MAU-NCC

MAUN

SMP

VC

MP

8E+000.1

9E+000.1

4 16

64

25
6

10
24

40
96

16
38

4

65
53

6

Prs ssoceropfor embuN

6

CESM

0

25

50

75

100

aprefix max spread sum

N
um

be
r o

f p
ro

gr
am

 li
ne

s

e-language,
PRAM mode

Shorter is
better!

Shorter is
better!

Interestingly, the MCPA appears to be architec-
turally directly implementable via the
advanced configurable emulated shared memo-
ry architecture (CESM), which we are currently
investigating:

The REPLICA project of VTT aims developing
CESM and methodology that would enable radi-
cally easier programming and higher per-
formance with a help of the PRAM model of
computing.

A proof of concept prototype will
be built!

100 Billion

Dollar Q
uestio

n

SEQ

!""

12

REPLICA = Removing Performance and Programmability
Limitations of Chip Multiprocessor Architectures

A 3-year Frontier research project funded entirely by VTT

Funding: 500 000  /year, in total 1 500 000 

Amount of work: 129 pm, duration 3 year

Target business: Companies that design or manufacture general
purpose and application-specific CMPs or
develop software/functionality for them

Common
clock P0 P2TpPTp

Distance-aware network

L 0 L p-1L 2L 1

Word-wise accessible shared memory

Read/write operations from/to the global shared memory
P T-1

P T-Tp

Scratchpad

Data

Address

Data

Thread

Address

Thread

Pending Pending

Fast memory bank

Reply AddressData Op

ALU

mux
Active
memory
unit

Step cache

Collection of switches
(i.e. superswitch) attached to
a processor, memory module
and four neighboring
superswitches

Mc-multimesh: Mc parallel
acyclic double mesh networks
Note: acyclic structure of the
network can not be seen from
this high-level illustration.

Physically distributed, but
logically shared data memory

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

PM
cL

a

t

I

PM
cL

a

t

I

PM
cL

a

t

I

PM
cL

a

t

I

PM
cL

a

t

I

PM
cL

a

t

I

PM
cL

a

t

I

PM
cL

a

t

I

PM
cL

a

t

I

Local data memory

Novel techniques:
- Latency hiding
- Efficient wave
synchronization

- Concurrent memory
access

- Multioperations
- Virtual ILP exploita-
tion

- Pipeline hazard eli-
mination

- Memory hashing

Architectural
view

Programmers view

!""

13

Conclusions
To address portability problems between different MP-SOC architecture-
paradigm/tool pairs and to simplify overall parallel implementation of the
functionality, we have introduced MultiCore Portability Abstraction
(MCPA) that provides

• an executable intermediate computational model that abastracts away
latency, synchronization cost and data partitioning effects

• simple guidelines for optimizing the application of certain architecture-
paradigm/tool pairs

• means to analyze how parallel the application is and how good the
architecture is for the application

MCPA appears to be directly implementable promising easier programmability
in the future. We are buiding an MCPA architecture prototype in REPLICA.

